

US005491707A

United States Patent [19]

Rieger et al.

[11] Patent Number:

5,491,707

[45] **Date of Patent:**

* Feb. 13, 1996

[54] LOW COST, HIGH AVERAGE POWER, HIGH BRIGHTNESS SOLID STATE LASER

[75] Inventors: Harry Rieger; Henry Shields, both of

San Diego; Richard M. Foster, Manhattan Beach, all of Calif.

[73] Assignee: Jamar Technologies Co., San Diego,

Calif.

[*] Notice: The portion of the term of this patent

subsequent to Jul. 18, 2012, has been

disclaimed.

[21] Appl. No.: **339,755**

[22] Filed: Nov. 15, 1994

Related U.S. Application Data

[63]	Continuation-in-part	of Ser.	No.	295,283,	Aug.	24,	1994,
	Pat. No. 5,434,875.						

[51]	Int.	Cl.6	***************************************	H01S 3/10
------	------	------	---	-----------

372/5, 25, 69, 22, 92

[56] References Cited

U.S. PATENT DOCUMENTS

4,630,275	12/1986	Rapoport	372/25
4,646,308	2/1987	Kafka et al	372/25
4,930,901	6/1990	Johnson et al	372/25
5,140,600	8/1992	Rebhan	372/25
5,339,323	8/1994	Hunter et al	372/25

Primary Examiner-Leon Scott, Jr.

Attorney, Agent, or Firm-John R. Ross

[57] ABSTRACT

A high average power, high brightness solid state laser system. We first produce seed laser beam with a short pulse duration and frequency in excess of 1,000 pulses per second. A laser amplifier amplifies the seed pulse beam to produce an amplified pulse laser beam which is focused to produce pulses with brightness levels in excess of 10¹¹ Watts/cm². Preferred embodiments produce an amplified pulse laser beam having an average power in the range of 1 kW, an average pulse frequency of 12,000 pulses per second with pulses having brightness levels in excess of 10¹⁴ Watts/cm² at a 20 µm diameter spot which is steered rapidly to simulate a larger spot size. These beams are useful in producing X-ray sources for lithography.

In one preferred embodiment, the seed beam is produced in a mode locked Nd:YAG oscillator pumped by a diode array with the frequency of the pulses being reduced by an electro-optic modulator. In a second preferred embodiment, the seed beam is Q switched and includes a Pockels cell for cavity dumping. In a third preferred embodiment, the short duration high frequency pulses for the seed beam is produced by a very short Nd:YAG crystal and a λ 2 Pockels cell.

As compared with prior art high brightness lasers, we have achieved our very high brightness by reducing the pulse duration by about 2 or 3 orders of magnitude, from a few ns to 100 ps or less and by focusing on a very small spot, but we are able to simulate a much larger spot by very rapidly steering our high average power beam over the area we need.

30 Claims, 6 Drawing Sheets

